

Thoughts on Multifunction Flight Vehicles

Daniel J. Inman

G.R. Goodson Professor and CIMSS Director

Department of Mechanical Engineering

310 NEB, Mail Code 0261

Virginia Tech

Blacksburg, VA 24061

Phone: 540 231 4709 fax 231-2903

http://www.cimss.vt.edu <dinman@vt.edu>

Outline

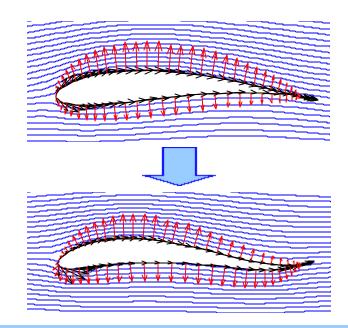
CIMS:

◆ Quick review of current effort

Multifunction flight wing configurations

◆ Thoughts on actuation

Distributed Modeling and Control of Adaptive Wings Virginia Tech (Robertshaw, Gern, Kapania)



Program Goal:

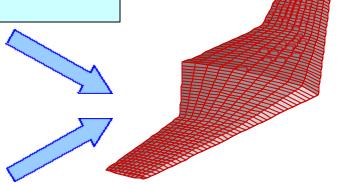
Determination of minimum control energy required to increase maneuverability of an aileronless UCAV using smart structures and morphing airfoil technology

Objectives:

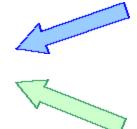
- Mimic the characteristics of wings with control surfaces
- ◆ Determine actuation energy, forces, moments, displacements, and time constants needed for an adaptive wing approach
- Investigate performance and maneuverability improvements of a morphing wing vehicle (no aileron control)

Department of Mechanical Engineering

Department of Aerospace and Ocean Engineering


Problem Approach

Determination of force, energy, displacement, and time constant requirements for smart wings:


Task 1: Dynamics & Control

Determine control algorithms to minimize energy input for maneuver control.

Task 2: Aeroservoelasticity

Aeroelastic effects of structural changes and use of energy transfer between structure and airflow to facilitate structural morphing.

Task 3: Adaptive Structures

Determine the optimum network of sensors and actuators for a given morphing structure to control vehicle maneuver and cruise performance.

Department of

Mechanical Engineering

Supportive Task: Aerodynamics
Provide expertise in steady and
unsteady aerodynamic loads for all

tasks by identifying/adapting existing aerodynamic tools.

Smart Wing Actuation

- Constant torque actuation of outboard wing section
 - torque applied close to trailing edge (relatively flexible structure)
 - leading edge actuation less effective (higher structural stiffness)

Need to understand where to actuate

Twist and camber actuation more effective then individual effects

Smart Wing Actuation

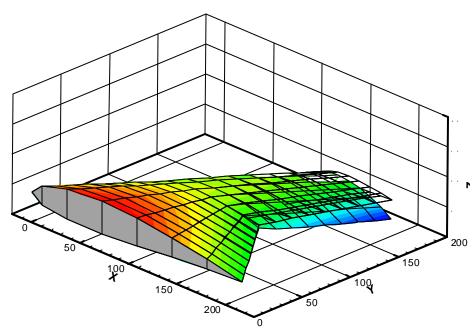
Wing deformation due to torque actuation:

$${q} = [K]^{-1} {P}$$

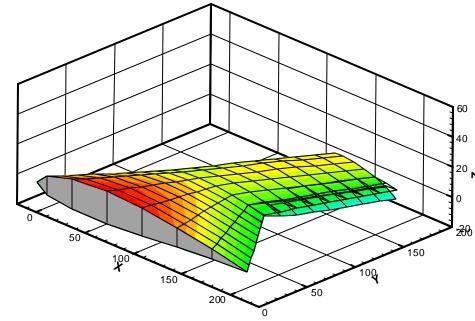
- {q} generalized displacement vector
- [K] wing stiffness matrix
- {P} generalized load vector from actuation forces
- ◆ Flexible wing actuation → consideration of aerodynamic loads:

◆ Total wing deformation due to actuation and aerodynamic loads:

$${q} = [K]^{-1} ({P_{act}} + {P_{aero}(q_{dyn})})$$



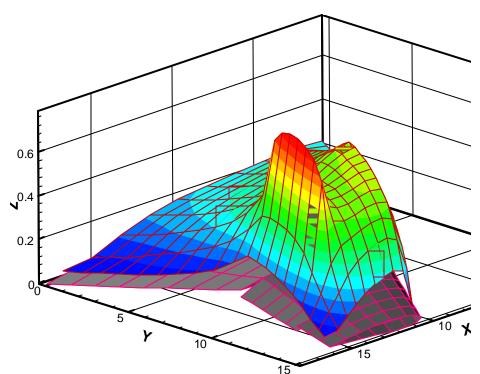
Smart Wing Actuation

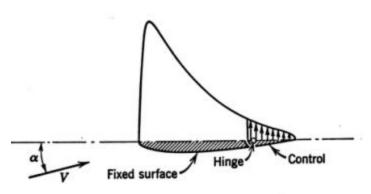

Constant torque actuation on outboard wing (300 lb-ft/ft)
No aerodynamic loads

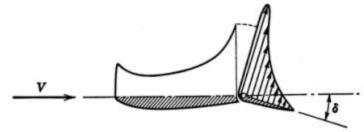
$$c_i = 0.482$$

Constant torque actuation on outboard wing (300 lb-ft/ft) Aerodynamic loads (5- q_{ref})

$$c_l = 0.460$$



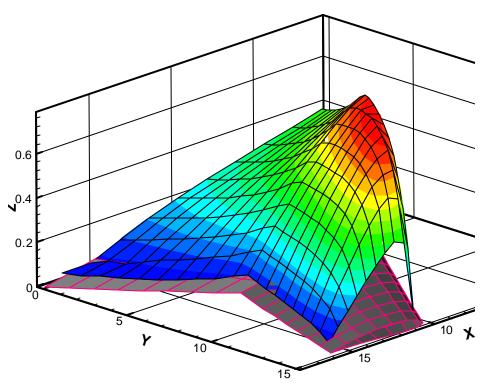

Trailing Edge Flap Performance Evaluation



3d Pressure distribution

Hinge moment

Actuation energy:
$$\Delta W_{flap} = \int_{0}^{\mathbf{d}} M_{flap}(\mathbf{d}) d\mathbf{d} = \sum_{flap \ panels} \int_{0}^{\mathbf{d}} \Delta S_{flap \ panel} q \Delta c_{p}(\mathbf{d}) x_{flap \ panel} d\mathbf{d}$$



Morphing Wing Performance Evaluation

3d Pressure distribution

Wing morphing

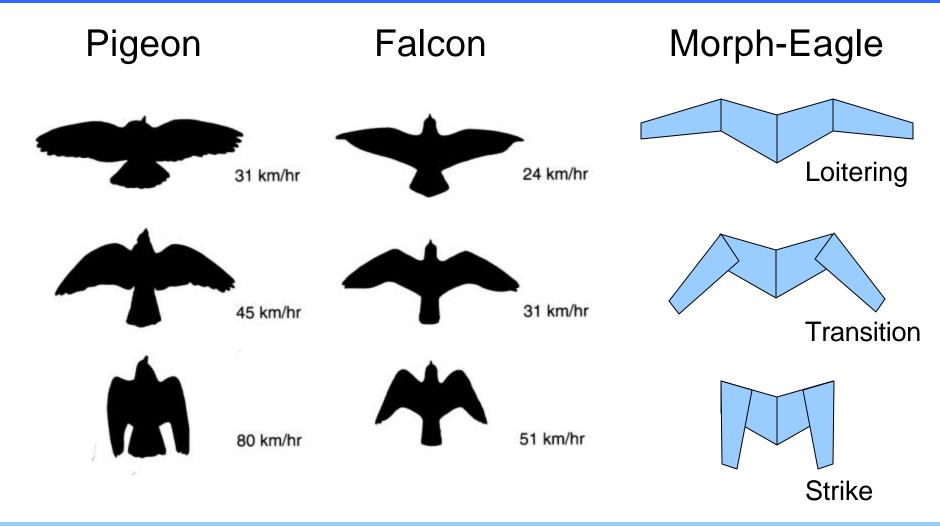
- Linear increase of outboard wing camber
- Constant strain actuation of upper and lower skins
- Increase of wing c_L from 0.3 to 0.47
- Equivalent to TE flap 10° down

Actuation energy:
$$\Delta W = \sum_{panels} \Delta W_{aero} dr = \sum_{panels} \int_{r_1}^{r_2} \Delta S_{panel} q \Delta c_p(r) dr$$

Actuation Energy and Peak Power Draft Calculations

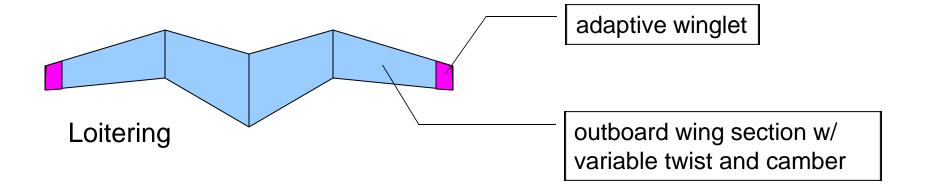
CIMSS

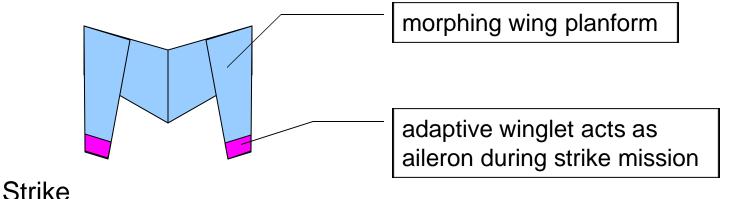
	Trailing edge flap	Morphing wing
$\Delta\chi_{\Lambda}$	0.17 (0.3 to 0.47)	0.17 (0.3 to 0.47)
Actuation	Flap10° down	Increased outboard wing camber (eq. flap10° down)
Actuation energy	136.99 ft-lbf (185.732 J)	423.13 t -lbf (573.687 J)
Peak power (based on 90%)sec flap rotation)	1232.90 ft lbf/rec (2.24 HP)	3808.17 ft-lbf/sec (6.92 HP)
Hinge moment	1302.7 ft-lbf (15632 in-lbf)	N/A



Multimission Vehicle inspired by nature

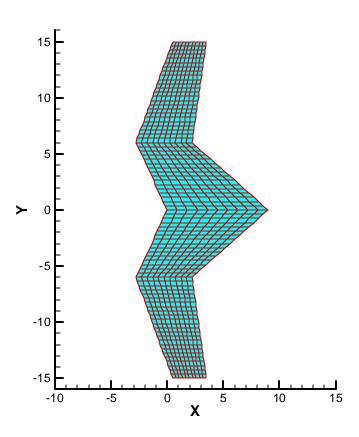
CIMSS

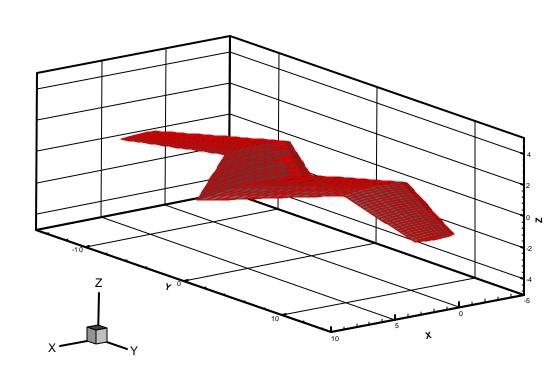




Multimission Vehicle

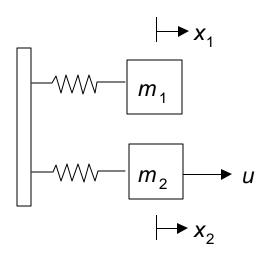
CIMS

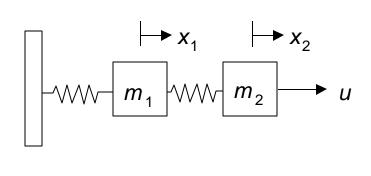

Multimission Vehicle model being used



CIMSS

Wing Planform




Lessons learned from Structural Control

CIMS

Controllability:

An example of an uncontrollable mechanical system

An example of a controllable mechanical system

- Unobservable if $y = x_2$
- \blacksquare Becomes controllable if u is also applied at x_1
- Uncontrollable for u at x_2

Controllability Measure

CIMS

- The controllability increase obtained by integrating the active member into the structure can be illustrated by calculating the gross measure of controllability
- ◆ Adding the active member into the control system significantly increases the controllability of the torsional modes for a marginal (0.1%) increase in power.

	1	
	Gross	
	Controllability	
	Slewing	+ Active
Mode	Actuator	Member
1st torsional	8.62	109.55
1st bending	155.16	156.42
2nd torsional	1.11	39.81
1st plate	17.28	54.31
2nd bending	80.29	91.61

Actuator Location Makes a Critical Difference

CIMS

PZT Actuators 0.3 watts 30% increase in performance

- Dynamics are rigid body plus flexible modes
- Rigid body actuator has poor control authority over torsional modes
- Results of using controllability are improved performance for little cost from a small actuator in exactly the right spot
- Placement of actuators is key and determined by dynamics

What are the steps to get there? - an actuator view

- Move with out fighting internal strain
- Go with the flow (use aero forces)
- Determine how much motion is needed?
- Determine energy required to go from A to B to A
- Energy (force, stroke, time constant) and location are the key issues to be sorted out before proceeding.

